Mechanism for oxidation of high-molecular-weight substrates by a fungal versatile peroxidase, MnP2.

نویسندگان

  • Takahisa Tsukihara
  • Yoichi Honda
  • Ryota Sakai
  • Takahito Watanabe
  • Takashi Watanabe
چکیده

Unlike general peroxidases, Pleurotus ostreatus MnP2 was reported to have a unique property of direct oxidization of high-molecular-weight compounds, such as Poly R-478 and RNase A. To elucidate the mechanism for oxidation of polymeric substrates by MnP2, a series of mutant enzymes were produced by using a homologous gene expression system, and their reactivities were characterized. A mutant enzyme with an Ala substituting for an exposing Trp (W170A) drastically lost oxidation activity for veratryl alcohol (VA), Poly R-478, and RNase A, whereas the kinetic properties for Mn(2+) and H(2)O(2) were substantially unchanged. These results demonstrated that, in addition to VA, the high-molecular-weight substrates are directly oxidized by MnP2 at W170. Moreover, in the mutants Q266F and V166/168L, amino acid substitution(s) around W170 resulted in a decreased activity only for the high-molecular-weight substrates. These results, along with the three-dimensional modeling of the mutants, suggested that the mutations caused a steric hindrance to access of the polymeric substrates to W170. Another mutant, R263N, contained a newly generated N glycosylation site and showed a higher molecular mass in sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Interestingly, the R263N mutant exhibited an increased reactivity with VA and high-molecular-weight substrates. The existence of an additional carbohydrate modification and the catalytic properties in this mutant are discussed. This is the first study of a direct mechanism for oxidation of high-molecular-weight substrates by a fungal peroxidase using a homologous gene expression system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct oxidation of polymeric substrates by multifunctional manganese peroxidase isoenzyme from Pleurotus ostreatus without redox mediators.

VPs (versatile peroxidases) sharing the functions of LiP (lignin peroxidase) and MnP (manganese peroxidase) have been described in basidiomycetous fungi Pleurotus and Bjerkandera. Despite the importance of this enzyme in polymer degradation, its reactivity with polymeric substrates remains poorly understood. In the present study, we first report that, unlike LiP, VP from Pleurotus ostreatus dir...

متن کامل

Characterization of manganese-dependent peroxidase isoenzymes from the ligninolytic fungus Phanerochaete flavido-alba.

Phanerochaete flavido-alba is able to decolorize and detoxify olive oil wastewater (OMW) in a process in which simple and polymeric phenols are removed. An unusual acidic MnP is accumulated during the degradation course. This microorganism produces two families of MnPs. MnP1 has an apparent molecular weight of 45 kDa and is secreted as a mixture of isoenzymes with pI ranging from 5.6 to 4.75. M...

متن کامل

Insights into the mechanism of lignocellulose degradation by versatile peroxidases

Lignocelluloses are imperative structural components of plant cell wall and are profusely found in agricultural crop residues. The structural heterogeneity and recalcitrance of lignin limit the accessibility of cell wall carbohydrates for constructive exploitation. During the past decades, diverse lignin degrading enzymes were characterized to facilitate the utilization of lignocellulosic bioma...

متن کامل

Potential of Trametes Hirsuta to Produce Ligninolytic Enzymes during Degradation of Agricultural Residues

Trametes hirsuta is an efficient lignin-degrading species due to its ability to produce laccase and Mn-dependent peroxidase. Agricultural residues represent prospective substrates for the bioconversion into fungal biomass and lignocellulolytic enzymes, but also they could be potential environmental pollutants. Evaluation of the potential of T. hirsuta to produce ligninolytic enzymes during soli...

متن کامل

Differential regulation of mnp2, a new manganese peroxidase-encoding gene from the ligninolytic fungus Trametes versicolor PRL 572.

A peroxidase-encoding gene, mnp2, and its corresponding cDNA were characterized from the white-rot basidiomycete Trametes versicolor PRL 572. We used quantitative reverse transcriptase-mediated PCR to identify mnp2 transcripts in nutrient-limited stationary cultures. Although mnp2 lacks upstream metal response elements (MREs), addition of MnSO(4) to cultures increased mnp2 transcript levels 250...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 74 9  شماره 

صفحات  -

تاریخ انتشار 2008